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PREFACE -

This study developed into a report of two volumes dealing with soil- I
structure interaction models. Volume I presents a Pasternak Base model and

its use for design of hydrotechnical structures. Solutions are given for a

variety of plates with loadings that are common with structures designed by

the Corps of Engineers. The Pasternak foundation model is labeled a two-

parameter model since two independent parameters control the behavior of the -

model. The two parameters are dependent on the physical properties of the

foundation.

Volume II discusses criteria for selecting suitable foundation models.

It presents thoughts on different procedures for choosing the independent

parameters for any soil-structure interaction model.

Dr. Arnold D. Kerr, P.E., Wilmington, Delaware, prepared the report

under Contract No. DACW 39-83-M-1533. The work in producing this report was

accomplished with funds provided to the US Army Engineer Waterways Experiment

Station (WES), Vicksburg, Miss., by the Civil Works Research and Development

Program of the Office, Chief of Engineers (OCE), under the Soil-Structure In- IS
teraction (SSI) Studies Project of the Structural Engineering Research Program

Work Unit.

Dr. N. Radhakrishnan, Chief, Automation Technology Center (ATC), coor-

dinated and provided objectives for the work. Dr. Robert L. Hall, Research

Group, Scientific and Engineering Application Division, ATC, monitored the

work and Mr. Donald R. Dressler was the point of contact in OCE.

Commanders and Directors of WES during the research and publication of

this report were COL Tilford C. Creel, CE, and COL Robert C. Lee, CE. Techni-

cal Director was Mr. F. R. Brown.
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APPLICATION OF PASTERNAK MODEL TO SOME SOIL-STRUCTURE INTERACTION PROBLEMS

SOLUTIONS FOR PLATES CONTINUOUSLY SUPPORTED*

ON A PASTERNAK BASE

PART I: INTRODUCTIONIii
Background

1. Hydrotechnical structure design plate problems are the basis for

this study, and their solutions are presented and discussed. The analysis of

continuously supported structures (for example, beams, plates, and shells)

requires the inclusions of the foundation response. The simplest representa-

1tion of the foundation response was suggested in 1867 by E. Winkler, when he

assumed that the contact pressure and the deflection at a point on the base

surface are proportional. Thus, for a two-dimensional plane surface repre-

sented by the x,y coordinate system, the response expression is

p(x,y) = k w(x,y) (1)

U where k , the proportionalit-y coefficient, is often referred to as the foun-

dation modulus.

2. This simple model, although useful for many structural and geotech-

nical engineering analyses, exhibits shortcomings, especially along the "free" -

boundaries of the structure. The situation created a need for the development

of more accurate pressure-displacement

relations. A number of these models were

2discussed by the author in 1964 and more

III G recently by A. P. S. Selvadurai.3

k 3. At present there is general

agreement that the Pasternak foundation

Figure I model, shown in Figure I, , is the next

Research supported by the US Army Engineer Waterways Experiment Station,

Vicksburg, Miss. 39180.
*-# The Pasternak foundation model, consisting of a shearing layer and a

spring layer, was introduced by the author in 1964 to facilitate the deriva-
tions. The original model presented by Pasternak (1954) does not contain a
shearing "layer"; the derivation presented is of questionable validity but
the obtained response expression is correct.

3
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order generalization of the Winkler model. Its response expression is

p(x,y) = k w(x,y) - G V2 w(x,y) (2)

where V2 = (32/8x2 + a2/3y2) is the Laplace operator.

4. A continuously supported thin elastic plate (Figure 2) is governed

by the partial differential equation

D V4w + p(x,y) = q(x,y) (3)

When the base response is represented

by the Pasternak model, Equation 2, Figure 2

Equation 3 becomes

D V4w - G V2w + kw q (4)

where D = Eh3 /12(l - v

This differential equation is identical to the response equation of a plate on

a Winkler foundation that is stretched by a uniform force field N = G

Purpose and Scope

5. In the following parts, solutions for plate problems governed by

Equations 2 and 4 will be presented. Emphasis is placed on problems that

occur in the design of hydrotechnical structures, beginning with a brief dis-

cussion of the analytical features of the Pasternak foundation model. These

features will be needed for the solution of some of the plate problems.

4



PART II: ANALYTICAL FEATURES OF THE PASTERNAK FOUNDATION MODEL

Line LoadI!

6. When p(x,y) repre-

sents a line load P along the

y-axis, as shown in Figure 3,

x w =w(x) and Equation 2 reduces

to

d 2w 2 w_ 5

dx2  
(

where

Figure 3 2 kG (6)

its solution is, noting the regularity conditions for w(x) as x ±,

w(x) = k e -c < x < +0 (7)

Thus, the Green's function for any position t of the line load P is

K(x;t) e-= x- (8)

Note that the obtained deflection of the foundation surface is nonoscillatory.

The line load P causes a dis-

continuity in the slope of the

W shear layer, dw/dx , along P

as shown in Figure 4. This phe-

nomenon, which does not occur in

the classical plate bending the-
Figure 4

ory, will be of importance when

considering plates with free

edges.

Distributed Load

7. Superposition can be used to obtain deflections of the foundation

5



surface that are caused by a dis-

tributed load p(x) . Setting

P = p(t)it and integrating over :
the loaded interval, as shown in

Figure 5, we obtain

+bb

WW -a e Idt (9)
-a

Arbitrary Load Figure 5

8. For an arbitrary load

distribution on the foundation

surface, the necessary Green's

function is obtained from the x

solution of a concentrated 7?/

force P acting at the origin

of the coordinate system (Fig- -'

ure 6). Because of the ex-

pected rotational symmetry

w w(r) , Equation 2 reduces

to 
Figure 6

2
2 d w dw 2 2
r + r T - of r w = 0 (10)

dr2

9. The general solution of Equation 10 is

w(r) = AlK o(or) + A2 10 (Or) (11)

where K and I are modified Bessel functions. Noting the regularity
0 0

conditions at r - , and the vertical equilibrium at P , we obtain

w(r) = K (tr) r > o (12)
27TG o

Thus, the Green's function for the three-dimensional foundation is

6



1

K(x,y;trq) = 2- K (etR) (13)

where, as shown in Figure 6,

R = (x 2 + (y 2 (14)

10. For a distributed

load p(x,y) over an area A

Figure 7 shown in Figure 7, the deflec-

tion of the foundation surface

at a point (x,y) is

W(xy) p(t) K (orR) dt dn (15)w~x~) -2ntG fAo

7L

.I

,5

7.
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PART III: PLATES AND STRIPS

Long "Rigid" Plate Strip; Symmetrically Loaded

11. The load on the plate strip consists of the uniform distribution

q (for example, own weight and

weight of water above it) and two

line loads F along the edges

(representing the weight of

walls), as shown in Figure 8.

12. Because of the symmetry

of the load we assume that the

strip is subjected to a central

line load

P = q 2L + 2F (16)

Figure 8

per unit length of strip axis, as

shown in Figure 9.

13. The deformed state of the foundation is shown in Figure 9. Under

the strip, -L < t < L

w w = constant (17)

Outside the strip the

unloaded foundation is

governed by the differ- L -

ential equation 2L

-G w' + kw = 0 0 < x < 00 (18) Figure 9

and the boundary conditions

w(0) = w
S

1im ((9{w} - finite (19)
X -

8



41. The contact forces at the plate-foundation interface (x > 0) con-

sist of the distributed pressure

p(x) kw2 (x) - Gw 2 (x)

2 2 2 2 2 - (84)
qG [2K Cos PX + ((K - 2)/P - (K + P2) /(pCt2)] sin pxle= qo p) K 1

(K2 + P2 + (K2 +p + 2K) G/D
0 < x <

and the line reaction force along the free edge (x = 0)

R =G[w' (0)- w'2 (0)]
=q° 0 (K22 + p 2 + 2KU ) G/D }(5

- ( 2  ~ K ) G D( 8 5 )

(K 2 + p2) + (K2 + + 2KU) G/D

The bending moments in the plate are

q 2 2 -KX
M (x) = -Dw 1 (x) =0K + 2 sin px e (86)

p [(K2 + p 2)+ (K+ p 2 + 2Ko) G/DJ

M (x) = V M (x) (86')y x

42. The distribution of the

reaction forces and bending moments

is shown, schematically, in Figure 24. ml

43. Note, that if base is p(x) I
modeled as a Winkler foundation the

corresponding results are: /
I, Iqo0

w(X) =- = constant
M, (x)

p(x) = qo = constant

M (x) - 0 M (x) 0 Figure 24

22



W(x ) =Ae tA( e - < x < 0
I 1 2

w2(x) = eKx (A cos px + A sin px) + e (A (A5 cos px + A6 sin px) + (78)

0 < x <

where, according to Equation 66,

K k G(79)

Because of the regularity conditions in Equation 77

A, = A5 = A6 = 0 (80)

It then follows from the conditions in Equation 76 that

A =A +q0
2 3 k

qo G
-2KG k-

Ak D (81)
32 2

(K 2 + K) + G (K2 + p2 + 2K)

2 2 qo G '

-(K2  p2  a -
Ak D i

thus,

qo 0 GG 2K OeX (82)Wl(x) = [i -iip2 2  /D

(K2 + p + (K 2 + p2 + 2Ka) G/D]

_ GG (200- < x < 0

o W G (2K COS pX + [(K2  p2 )/p] sin px}eKX (83)

(K2 +p + (K2 +p + 2KG) G/D
0 <X <+

21
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Semi-infinite Plate Subjected to a Uniform Load

38. Consider the semi-

infinite plate problem shown

in Figure 23. Of special in-

terest is the distribution of

the contact pressure and the

plate bending moment in the

vicinity of the free edge (for

example, along the free edge of

a highway or airport pavement).

39. The formulation of Figure 23

this problem consists, noting

that w = w(x) , of the differential equations

-G w + kw = 0 -0 < x < 0Wl = =(75)

DW-v w'' + k w = q 0 < x <
2V 2 2 o

the boundary conditions

w 1(0) = w 2 (0)

w1(o)= 0 (76)

Dw11 (0) + G'0(0) - w(O = 0

and the regularity conditions

lim{Wl} -* finite 1

x -m (77)

lim{w2} finite

40. The general solution is

20
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35. When the plate is

subjected to a distributed load

q(x) , as shown in Figure 21,

the deflection may be obtained

using superposition. Namely,

b
w(x) = f q(t)K(x;t)dt (72)

a

where

Figure 21

K(x;t) 4KI-- eH - [p cos(p x t + K sin (p x - ](73)

The corresponding contact pressure distribution and the plate bending moment

are obtained from Equations 70 and 71.

Infinite Plate Subjected to a Uniform Load

36. Consider an infinite plate

of constant thickness subjected to

a uniformly distributed load,

C;STANT q = constant , as shown in Fig-

ure 22. The governing equation

DV 4 w - GV 2w + kw = q (4 bis)

Figure 22 is valid over the entire x,y domain.

37. The problem suggests that w constant throughout. Thus,

w = q/k (74)

Note that in this case the shearing layer has no effect on the solution. The

contact pressure at the interface of plate and foundation is p = qo 0 The

bending moment in the plate, due to qo , is equal zero throughout the plate.

19



Gi
m -+ 21 G +_ _ k (65) .

m 1, 2 , 3 , 4  [ -]

2 "
Noting that (G/4D) - k/4D = (G/4D - lk/4D) (G/4D + lk/4D) we distinguish

three cases when G = 2 VkD . For plates resting on a soil foundation the case

G < 2 lkD is usually of interest. For this case

m ±(K ± ip) (65')

where

KG
} G (66)

and the general solution is

w(x) e - KX (A I cos px + A2 sin px) + e (A3 cos px + A4 sin px) (67)

33. Because of the regularity condition, Equation 62, it follows that

A =A 0 (68)
3 4

Determining A and A from the boundary conditions in Equation 61 and sub-
1 2

stituting them into w(x) , we obtain the plate deflection

P -Kx
e (p cos px + K sin px) (69)

4Kp D

for x > 0

34. The contact pressure between plate and foundation is obtained as

2
p(x) kw(x) = G (70)

dx 2

The corresponding bending moment distribution in the plate is

2
M(x) -D, 2 (71)

dx

18
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IK
K (cer)

w(r,) C K Cos 0 (59)o K (aa)
I2

IF
The procedure for determination of the contact reactions is similar to the

one used in the previous section.

Infinite Plate Subjected to a Line Load

31. The problem shown

in Figure 20 is symmetrical.

Thus, the formulation consists

of the differential equation

for w(x)
0

k Dw'v -G w+ kw 0 (60)

in 0< x <

Figure 20 the boundary conditions

W'(0) =0)

(61)
w1 1 (0) P

and the regularity condition

lim{w,w'} - finite (62)
X-*W

32. The solution of Equation 60 is in the form

w(x) = Aemx (63)

Substituting this into Equation 60, it follows that m has to satisfy

4 2G k"-
m - m +G = 0 (64)

The four roots of this equation are

17
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rw v 2RR!- T. I 2 (2

whe re

2

2 2 2 
22)

Or r Or r 80

the boundary condition

w(a,6) = 0 cos (53)

and the regularity condition

limfw} finite (54)

29. Noting Equation 53, the solution is assumed to be of the form

w(r,e) = W(r) cos 0 (55)

Substituting it into the differential Equation 51, it follows that this equa-

tion will be satisfied when W is a solution of

r2 - + r - ( + G 2 r 2 ) W 0 (56)Sdr z 2 r

in a < r < . Setting ar = p the above equation becomes

2
p2 dW + W -(1 + p) W 0 (57)

dp

This is a Bessel equation. Its solution is

W(r) = A II (r) + A2K1(or )  (58)

where I and K are modified Bessel functions of order one.

30. For large r values, I, - e r/2ar . Therefore, according to
Equation 54, A = 0 • Boundary condition Equation 53 yields A = Wo/K (aa)

U~ 0 11 o
Thus,

V. 16
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and

(1 + aL)MR+

2L[ + aL + (AL)3]

where M = Pe Thus, the rotation of the strip and the contact reactions are

expressed in terms of the moment M and the strip and base parameters.

Circular "Rigid" Plate; Eccentrically Loaded

27. The plate problem for

consideration is illustrated in

Figure 18. It is assumed that

the eccentricity is sufficiently

small so that there will be no

separation between the plate and

base. Because the resulting for-

mulation is linear the solution

consists of two parts, as shown in

Figure 14. Since specifics of the Figure 18

centrally loaded plate were pre-

sented previously, the solution for the plate subjected to a moment M = Pe

is detailed below.

28. Considering the de-

formed state shown in Figure 19, a

from the shaded triangle it

follows that -

w(r,e) = w cos 8 (50) a

for 0 < r < a and 0 < 0 < 2n .

The unloaded base region is Figure 19

governed by the differential

equation

-G w + kw 0 a < r < O (51)

15
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"* where

Of Th (44)

24. The contact pressure under the strip is

2
d w

s
p(t) k w G 2 = w k C/L (45)s d t2 0

Considering the vertical equilibrium of the
R

shearing layer in the vicinity of = L , as

shown in Figure 16, it follows that the line

reactions along the free edges are Vs(L-V) V

R G[w( - w)(]

or L

R G w (1 + orL)/L (46)0 Figure 16

25. In order to express w in terms of N , we consider the moment

equilibrium (per unit length of strip axis), as shown in Figure 17. It is

L
- 2RL - 2 f p(t) t d : 0 P(

0

Noting Equations 45 and 46 and performing the

indicated integration, we obtain

Figure 17

w (47
0 2G[1 + aL + (L)2/3] (47)

26. Substitution of the above expression into Equations 45 and 46 yields

2-
p() (48)

2[ + aL + (aL)2/3 L

14



-L -L L L -L -

Figure 14

It is assumed that the eccentrically loaded strip stays in contact with the

base. Thus, there is no partial lift-off from the base. Since the solution

for the centrally loaded strip has been presented, only the solution for the

line moment M will be dealt with in the following text.

22. Consider a very

long strip subjected to a

line momemt M . The corre-

sponding deformed state is

shown in Figure 15. Because

of the anticipated asymme-

trical deformations only the

"-I. right half will be analyzed.

23. Under the strip,
Figure 15 the deflections are

w ( )w (40)
s 0L

The deflections outside the strip are governed by the boundary value problem

2
dw-G- + kw 0 0 < x < 0 (41)

dx
2  -

w(O) = w
o (42)

lim [w} finite

The solution is

-Otx

w(x) =w e 0 < x < OD (43)

13



[w 
(36)

71a [2 YKa " Kl (Ota)/K ° (aa) + ka

Thus, in terms of P , the uniform pressure is

P (37)
" 2 12 K1 (aa)/[Ua Ko(Oa)) + 1

and the line reaction becomes

-- R (38)
na[2 + aa K (aa)/K (aa)]

2
where a = k/G and K and K are modified Bessel functions.

Long "Rigid" Strip; Eccentrically Loaded

20. The load on the

rigid strip consists of a

uniform distribution q

(own weight and weight of

water) and two unequal

* . line loads F and F
1 2

- along the edges (weight

of walls), as shown in

Figure 13. Thus, the

rigid strip may be con-

sidered as being subjected

to an eccentrically located

*line load 
-1f l __

q 2L + F + F (39)
0 1 2 L_ ___A_

per unit length of strip Figure 13

axis, as shown in Figure 14.

21. Because of the linearity of the formulation, the answer for the

eccentrically loaded strip consists of the combined solution due to a central

load P and a line moment N = P as shown, schematically, in Figure 14.

e

12
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-r 17 -- 7 N - .

2:: ur (29). , "" lim{w,w' } - finite (9

18. The general solution of Equation 10 is

w(r) = A K (ar) + A I (ar) (11 bis)

because of the regularity condition (Equation 29), A = 0 Substituting the

above expression into the boundary condition (Equation 28), we obtain

A, w /Ko(aa) Thus,

K (ar)

0
wtr) = ., a < r < Oo(30)

s Ko0(cfa)

The expression for the contact pressure is

p(r) = k w = constant 0 < r < a (31)

since under the rigid plate dw/dr E 0 . Because of the radial slope discon-

tinuity in the shearing layer across r = a , there appears to be a concen-

trated line reaction force R along the free edge of plate. Considering the

vertical equilibrium of the shearing layer in the vicinity of R we obtain

dw
R -G - (32)

r=a

Noting that

dK (ar)

r = -aK Car) (33)drI

it follows that

Kl(aa) .:R w 1- (34)
s kGK (Ota)

0

19. The relation between w and P is obtained from the verticals

equilibrium of the circular plate. It is

P - 2raR - na2k w 0 (35)s

Solving it for w , and noting Equation 34, we obtain
s

11
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and the concentrated reactions along the free edges are

R = VkG w = P (26)
2(1 +\fIG7L)

" Note that L.., concentrated reactions R in Figure 10 represent in an actual

. "continuum base a strong increase of the reaction pressure at the free ends, as

shown by the dashed line.

"Rigid" Circular Plate; Centrally Loaded

S." 16. The next consideration is a "rigid" circular plate being subjected

to a central load P , as shown

in Figure 11.

17. The deformed state

and the notation used are shown

in Figure 12. Under the plate,

0 < r < a,

w w = constant (27)

Since the problem is rotationally
"" "-Figure 11

symmetrical, outside the plate

region the unloaded foundation

is governed by the differential

equation

2 d2w dwr - + r -
dr 2  dr

- ar w = 0 (10 bis) ,

in a < r < , the boundary

condition

w(a) = w (28) a

and the regularity condition Figure 12

10
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Because of symmetry, it is sufficient to consider only one side. The solution

for the above boundary value problem is

-ax

w(x) = w e 0 < x < 0 (20)

14. For design purposes, the pressure distribution under the strip is

of interest. Since w(t) = constant , it follows that d 2 w/d _ 0 and thus

p(Q) = k w = constant (21)

77,[ in -L < ( L . Because of the slope

discontinuity along the free edges of the

I 1strip, at +L , there occur concen-

L - trated reaction forces R , as shown in

Figure 10 Figure 10.
15. Considering the vertical

equilibrium of the shearing layer in the vicinity of R , we obtain

R - -G w' (0) (22)

Noting that w(x) = w e , it follows that

R =Vk w (23)

Th- relation between w and P is obtained by considering the vertical

equilibrium of the strip (Figure 10) per unit length of strip axis. It is

P - 2R - k w 2L = 0 . Noting Equation 23, it yields
s

w (24)

Thus, in terms of P the reaction pressure in -L < < L is

p(t) = k w = 2 (25)

9



Long Strip Subjected to a Uniform Load and Boundary Forces

44. In designing dock

structures and navigation locks,

.*.structures as shown in Figure 25

are encountered.

* i45. One approach for

-'>..analyzing structures of this

type is to estimate the largest

pressures that can be expected
Figure 25 on the finished walls, subject

the structures to a variety of these anticipated loads, then analyze.

46. In the past, the Winkler foundation was used to represent the re-

sponse of the base. A major shortcoming of this model is that it does not

correctly represent the vertical pressures near the edges 0 and ,thus,

the resulting bending moments in the floor plate may strongly deviate from

the actual ones.

47. To eliminate part of this shortcoming, it is suggested that the

Pasternak foundation be used rather than the Winkler. The corresponding model

of the structure to be analyzed is shown in Figure 26.

48. Since the pressures

and the wall weights are as-

sumed to be known, the problem

Preduces to the analysis of the
q0

structure shown in Figure 27.

Note that the problem is simi-

. .. lar to the one shown in Fig-

Figure 26 ure 8, except that in Fig-

ure 27, the floor plate is

flexible.

49. Noting that wI = W (x) and w2 = 2 , and utilizing symmetry,

we can formulate this problem by use of the differential equations

Dw IV - Gw" + kw I = q 0 < x L

o0
- Gw" + kw = 0 0< o*2 2

23



L..

Figure 27

the boundary conditions

w (0) 0 W,1(0) = 0 (88)

w1(L) = w2 (0)

Dw'(L) = M (89)

Dw" (L) + G[w'I(L) w2(o) =F

and the regularity conditions

II

lim {w2,w} - finite (90)
x4

The general solution is

w(x) A cos px cosh Kx + A2 cos px sinh KX
12

qo

+ A3 sin px cosh Kx + A4 sin px sinh Kx + k- (91)

24
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where

w2 (x) = A5eU + A6e-U (92)

-i = .(91')

and

K k

= (92')

for G < 2 VkD

50. Note that in the above formulation the axial compression forces Nx

in the floor plate are neglected in the determination of p(x) and M(x)

* They may be easily included, however, by replacing G by (G - N ) in the

* .first equation of Equation 87 and in Equation 92', and by the corresponding

modification of the third equation in Equation 89.

51. From the boundary conditions in Equation 88 it follows that

A A = 0 . From the regularity condition, Equation 90, it follows that
2 3
A = 0. The remaining three constants Al. A A are determined from the
5 1'4' 6

three boundary conditions in Equation 89,

52. The corresponding pressure distribution is

p(x) =.kw1 -Gw"
1

=q + k [(A1 cos px cosh KX) + (A4 sin px sinh KX)]

- G [(K2 - p2) A1 + 2Kp A4] cos px cosh KX

-G [(K2- p2) A4 - 2Kp A1] sin px sinh Kx (93)

The reactions along the edges are

R =G [wj(L) - w'(0) G [(KA4 - pA1) sin pL cosh KL

+ (pA4 + KA1) cos pL sinh KL + A6a] (94)

and the bending moments in the floor plate are

L M1(x-) = -Dw'' (x)

-D[(K p A + 2Kp A cos px cosh KX

+ [(K2 p2  A 4  2pK A1  sin px sinh KX, (95)

25
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Other Related Problems

53. A number of related problems not discussed in this report are

described by Selvadurai. 3

26
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